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NMR study of InP quantum dots: Surface structure and size effects
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We report the results 6P NMR measurements on trioctylphosphine ox@®PO) passivated InP
quantum dots. The spectra show distinct surface-capping sites, implying a manifold of crystal—
ligand bonding configurations. Two P surface components are resolved and related to different
electronic surroundings. With decreasing particle size th&'FPncore resonance reveals an
increasing upfield chemical shift related to the overall size dependence of the InP electronic
structure. ©1999 American Institute of Physids$s0021-960609)70718-X]

Semiconductor clusters with monodisperse diametergiere performed at a’'P Larmor frequency of 0
ranging from 10-100 A manifest quantum dot behavior. =75 18 MHz By=4.36T) and v,=161.99MHz @,
The surface composition of these colloidally prepared=9.39T) using Chemagnetics CMX spectrometers and 4
particle$ has been shown to be important because of itsnm MAS probe assemblies from the same manufacturer.
influence on the discrete electronic structure and quanturThe MAS frequency ¢,,) was stabilized within 3 Hz for all
confinemenit®-®as well as its relation to electronic transport experiments. Th&; nutation frequency was matched #g
properties;® structural phase transitions, and thermodynamic= 140 kHz on all channelstd, 3P 13C). Spectrum @A) was
stability.” In addition, the spectroscopic characterization ofobtained by &P single-pulse excitation wittH decoupling
the capping molecules can provide valuable information orduring data acquisition. The inhomogeneously broadened
the morphology and facetih@f the nanoparticles. resonance at-178 ppm (relative to 85% HPQO,) with a

In this letter, we report an initial study on IlI-V semi- linewidth of §;,,=58 ppm (1,,=4400 Hz) is assigned to the
conductor InP dots using one- and two-dimensiqd&l and  In 3P core(interior) nuclei: For a spherical InP cluster with a
2D) NMR. We find distinct capping and fAP surface sites, typical diameter of 45 A, only~20% of all atoms reside at
implying a variety of ligand—crystal bonding arrangementsthe surface. The lineshape is slightly asymmetric and upfield
and structural environments. The chemical shielding of theshifted with respect to bulk P [6=—147 ppm, &1,
In3P resonance increases with decreasing dot size whick 43 ppm (v;,,= 3200 Hz)], with the main source of broad-
can be interpreted as a decrease in*tReparamagnetic shift ening being the indirect exchange interaction with tn
with increasing electronic excitation energy of the quantumneighbors §=9/2),2° as well as a contribution from the
confined nanoparticles. second-order  anisotropic (pseudgdipolar—quadrupolar

InP samples have been prepared under argon using ttehift}2 The weak downfield segment of the spectrum
dehalosilation reaction of Ingand RSi(CHy)3); at 540-570  (~8%) in the range—20< §<80 ppm corresponds t&'P
K in TOPO as coordinating solvefitDistinct size distribu- TOPO resonances at the crystal surface. From the relative
tions of the particles were obtained by size-selective precipi-
tation resulting in InP clusters with average diameters in the
range of 20-50 A and distributions ef20%" For the sur-  tagLe I, % chemical-shit paramete(35.18 MHz, 300 K; SisoiS the
face selective experiments, the separation and isolation wetgisotropy andy the asymmetry of the chemical-shift anisotropy tensor
carried out in a drybox. The precipitates were dried undefCSA as defined in Ref. 18.
vacuum and the resulting powder samples sealed in pyrex
tubes(0.13 Pa. In a second synthesis, the identical precipi-

a

Siso (PPM  ST5°(PPM)  6%niso (PPM) 7

tation and isolation procedure was carried out in air, yielding Free TOPO 47 2 1183 0+0.05
TOPO and oxide passivated InP dbfsX-ray diffraction InP-TOPOL k2 10%2 9%=5  0=01
spectra(Siemens D5000, Cu Kradiation) and transmission InP-TOPO2 36:2 12=2

P , . InP-TOPO3 62  10+2 7856 101
electron microscopy imagesTEM, TopCon EMO002B INP-TOPO4 _g+2 12+2 ...b ...b

showed that the InP dots were highly crystallipare phase,

zinc-blendg, roughly spherical in shape, with indications of InP (bulk) “ur 4 o° 0°

InP-core(45 A)  —178+49  58+5d

faceting. The cluster diamete(d) were inferred from UV/ a-InP (45 A) _118+8 g3+ 7¢
vis absorption spectrddP 8452 obtained immediately upon B-InP (45 A) —199+69  55+5¢
separatioff.

Figures 1A) and iB) show typical 1D%P (S=1/2) Za:;igniﬁya;feggesdrgtggggfci”;:ﬁegp? data.
NMR spectra of TOPO-InPd=45 A) recorded under con- cyngopted materialRef. 10. '

ditions of magic-angle spinningVIAS).° The experiments “Lorentzian least-squares fit.
0021-9606/99/110(18)/8861/4/$15.00 8861 © 1999 American Institute of Physics
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In31P-core eters (see Table )l implies a manifold of ligand—crystal
bonding environmentf.e., unidentate and bridging oxygen
coordinatiori* to the cation(In) or perhaps aniofP)].2 This
indicates that the capping molecules occupy distinct InP-
. e . . ~Arnan bjﬁ‘? surface sites, conceivably due to the faceting of the nanopar-
200 100 0 00 200 300 -400 §S§ ticles. Our finding contrasts with earlier studies on thiophe-
nol capped CdS or TOPO/TOP capped CdSe particles where

e only one surfactant site was identifi&d.
\\ The upfield part of the spectrum in Fig(B) shows two
partially overlapping In-bonded'P resonances centered at
;3% —118 ppm(a-InP) and —199 ppm(B-InP). Both lines are
shifted with respect to the core resonafeee Fig. 1A)] and
e they can be interpreted as two different structural
- &;@A e In 3¥P-surface environments. The assignment is corroborated
-400 gk by a series of CP experiments with varying contact tifig.
8 (ppm) 2): We find a gradual downfield shift of the first moment for
FIG. 1. 1D 3P NMR spectra of TOPO-InP dotl€45 A) recorded at ~ 7cp> 0.5 ms(dashed line in Fig. 2 This can be rationalized
75.18 MHz and 300 K~5 mg sample sealed in a pyrex tybéA) Single by the presence of a slow polarization-transfer process from
gﬂ';:chseelzgmzioa?Pscri‘z':y Oﬁzﬁgzﬁgne:fe:r’i‘::;f?Wf;G_t;%%S(?tS- TOPO protons to remot&P core nuclei, shifted in resonance
1.5 s delay between experimen?s; 36 000 tranZients. Both epxperiml:en’ts wef'gequency W'th _reSpeCt t6'P surface SpIns. Neg'ec“”g
recorded under MAS1{,,— 5 kHz) and on-resonandel decoupling during ~ chemical-shift differences among the core nuclei, the full
data acquisition. Spinning sidebands are marked with asterisks. The labeleseries of CP spectra is fitted quite well with a minimum of
resonances are described in the main text. three Lorentzian components with varying intensities but
constant chemical shifts and linewidttfsig. 2 and Table)l
intensities of the two components in FigiAl we infer an The dependence of the extracted intensities as a function of

average TOPO surface coverage-620%, consistent with ~7cp IS Shown in Fig. 2, with the curves fitted by the form
x-ray photoelectron spectroscopgPS) on similar sample8.  Mqe(1—€~7'T1s) invoking the spin-temperature approxi-
Spectrum 1B) was obtained byH—3'P cross polarization Mation and neglecting, , relaxation®*°It is evident that the
(CP** with a contact time of,=300us and proton decou- Surface components, -InP, and TOPQreach a state of
pling during data acquisition. The lineshape in FigB)Xdif-  duasi-equilibrium forr,>1.5ms and are characterized by
fers considerably from that of Fig(A) since the CP experi- buildup rates roughly one order-of-magnitude faster than that
ment probes®'P spins in close proximity to the TOPO of the core spins. For the present experimental conditions
protons and is thereforsurface selectiveFour different}P  (i.e., high spinning speed where ti® zero-quantum line-
capping resonances are resolf@@PO 1-4 with isotropic  width is given by the effectivelS dipolar coupling
chemical shifts 6,) at 71, 36, 6, and-8 ppm and an aver- frequency,’” T\sx(r). Here,r s denotes a typical distance
age linewidth of 11 ppm (relative intensity ratios: between3'P spins and surface protons. Assuming that the
1.0:0.4:0.3:0.8 The distribution of chemical shift param- TOPO 3P nuclei are efficiently polarized by the nearest-
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FIG. 2. Left side: 1D'H—3'P CP spectra of TOPO-InP
dots with varyingr,,: 2 s delay between scans; 18 000
transients. Other experimental parameters are as in Fig.
1(B). Only the indium-bonded portion of tH&P spectra

is shown (dotted line: experiment, gray line: least-
squares Lorentzian fit described in the main eXhe
vertical dashed curve connects the spectral maxima,
emphasizing the downfield shift of the first moment
with increasingr,,. Right side: Buildup of thé'P in-
tensities with increasing,. The extracted time con-
stants {T,s) are given in the figure.
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fusion is almost exclusively confined to neighboriitg spe-
cies. As expected, the spectra show no cross peaks due to
spin diffusion for short mixing times(,=0.5ms). Never-
theless, the inhomogeneous character of*tRespectrum is
clearly exposed by the elongated shape of the signal peaks
along the diagonal. At longer times of several tens of milli-
o} Ty=05ms ¢ seconds, cross peaks between all surface sites and e In
' core emerge. The asymmetry of the intensities across the

diagonal indicates a preferential surfaceore directed spin-
diffusion process. No polarization transfer among the various
capping resonances could be detected on time scales of 0.1
<71;,<200ms under MAS or static conditions. This indi-
cates no aggregation of capping molecules on the cluster
surface ford>30A. Furthermore, broadbafid?as well as
frequency selectivé spin-diffusion experiments suggest that

305D the spectral features observed in the 1D data mainly result
N N from structural variations within the clusters, although con-
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tributions of heterogeneities induced by the particle size dis-
tribution cannot be completely excluded. In particular, in

proton driven spin-diffusion experimenfs with 2<r,

ol tp=20ms <60 ms(data not shownwe find that then-InP site exhibits
a rapid polarization transfer to the core a@draction, but

00\ o
ol ° °u Lo does not sample its own local environment. Consequently,
PLeute a-3P surface sites share similar electronic surroundings but
g}- ) o Q’;ﬂ ) are spatially remote from each other. Since XPS data indi-
27 : ] o 0y cate that the large majority of TOPO ligands bind to indftim,

both In®P surface species can be regarded as uncapped.
Based on the relative chemical-shift differences, we therefore
conclude that thes-InP fraction reflects a relatively “unper-
turbed” core-like nearest-neighbor configuration, whereas
FIG. 3. 2D%'P correlation spectra of TOPOJoxide passivated InP clusters®™ !N 3P nuclei man'feSt significantly altered bqndlng envi-
(Ref. 20 (d=32 A) recorded Withr,=5 MS (vae= 10 kHz). Similar spec- ~ fonments, possibly due to surface reconstruction to reduce
tra were recorded for TOPO-InP witth=45 A. Protons were decoupled the number of dangling bonds.
during the evolutiontg), detection (), and mixing (ry,) times; 1024 tran- The electronic quantum confinement of the InP particles
sients pet value. The data sets (180L00 points were zero filled 10 256 s reflacted by thé'P chemical shift data: In analogy with
points in each dimension and Fourier transformed to obtain pure absorption . . . .
mode spectra®P spin diffusion was driven by rotor-synchronized 180° €XPeriments on II-VI clusters, we find an increasing up-
radio-frequency(rf) pulses during the mixing timéRef. 22 and is mani-  field shift with decreasing dot size. Figure 4 illustrates this
fested by the occurrence of cross peakg#v,) connecting the various phehavior by correlating the chemical shift with the inverse
sites on the dlagonat‘hln Ilneg. Contours are at 4%, 6%, 16%, 32%, 64%, energy corresponding to the average size-dependent band
and 96% of the maximum signals. . . S . .
gap of the clusters. Since size variations in the electronic
structure arise through systematic transformations in the den-

neighbor protons onlyi.e., (r,s)ima=2.5A), a lower bound  Sity of _state§3 (i.e., the electronic states shift to higher en-
for the H=3'P distances can be estimated: We obtain€'9y With the concentration of the oscillator strength into a
<r.s>a,ﬁ:3.2/1\ (a typical H—P van der Waals distanand few tr_ansitio_n$_, it is surmiseq that the observed drift in the
(r1s)eore=6 A, indicating that the capping octyl chains are in chemical shift is largely dominated by the paramagnetic con-
closest contact with the semiconductor surface. This conclufibution (o) to the chemical shielding |nteract|6f‘-|.The
sion is further corroborated by the observed upfield shift of gsotrop|c4value olr, can be expressed in a perturbation treat-
ppm for the InNP-TOPG3CH, resonances compared to free Ment a$
TOPO. Moreover, the core spins probed by the CP experi-

10 5 0 5 10
Vo (kHz)

2% 2

ment with 0.5< 7,,<4 ms reside within the first and second 0= _ Pofh E 1 (0|3 J In)
shell from the crystal surface. Fag,>50 ms the CP spectra P 8m§77 nzo AE, g
converge to the single-pulse spectrum shown in Fig.)1In

L . : ; Jd 1 Jd 1
fact, fitting spectrum @A) with the parameters given in s 10V +(0[3 el

) i i X(n[Z, 310)+(0[%/ z|n)

Table | results in a relative InP-surface fractiang-InP) of i qp, i qp,

24%, in agreement with the previous estimate ~620%.
The spatial proximity of the varioud'P sites can be x(n[3 i|0> 1)
probed by 2D rf driven spin-diffusion experimehté! (Fig. o
3). Since the rate of the dipole induced mutual spin flips
strongly depends on the nuclear separatiqf?l,17 spin dif-  Here,m, is the mass of the electroqg, and ¢, are the dis-
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